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Abstract. A dormant indigenous bundle is an integrable P1-bundle on a
proper hyperbolic curve of positive characteristic satisfying certain condi-
tions. Dormant indigenous bundles were introduced and studied in the p-
adic Teichmüller theory developed by S. Mochizuki. Kirti Joshi proposed
a conjecture concerning an explicit formula for the degree over the moduli
stack of curves of the moduli stack classifying dormant indigenous bundles.
In this paper, we give a proof for this conjecture of Joshi.
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Introduction

Let

MZzz...

g,Fp

be the moduli stack classifying proper smooth curves of genus g > 1 over
Fp := Z/pZ together with a dormant indigenous bundle (cf. the notation

“Zzz...”!). It is known (cf. Theorem 3.3) that MZzz...

g,Fp
is represented by a smooth,

geometrically connected Deligne-Mumford stack over Fp of dimension 3g − 3.
Moreover, if we denote by Mg,Fp the moduli stack classifying proper smooth

curves of genus g over Fp, then the natural projection MZzz...

g,Fp
→ Mg,Fp is finite,

faithfully flat, and generically étale. The main theorem of the present paper,
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which was conjectured by Kirti Joshi, asserts that if p > 2(g − 1), then the

degree degMg,Fp
(MZzz...

g,Fp
) of MZzz...

g,Fp
over Mg,Fp may be calculated as follows:

Theorem A (= Corollary 5.4).

degMg,Fp
(MZzz...

g,Fp
) =

pg−1

22g−1
·

p−1∑
θ=1

1

sin2g−2(π·θ
p

)
.

Here, recall that an indigenous bundle on a proper smooth curve X is a P1-
bundle on X, together with a connection, which satisfies certain properties (cf.
Definition 2.1). The notion of an indigenous bundle was originally introduced
and studied by Gunning in the context of compact hyperbolic Riemann surfaces
(cf. [10], § 2, p. 69). One may think of an indigenous bundle as an algebraic ob-
ject encoding uniformization data for X. It may be interpreted as a projective
structure, i.e., a maximal atlas covered by coordinate charts on X such that
the transition functions are expressed as Möbius transformations. Also, various
equivalent mathematical objects, including certain kinds of differential opera-
tors (related to Schwarzian equations) of kernel functions, have been studied by
many mathematicians.

In the present paper, we focus on indigenous bundles in positive characteris-
tic. Just as in the case of the theory over C, one may define the notion of an
indigenous bundle and the moduli space classifying indigenous bundles. Vari-
ous properties of such objects were firstly discussed in the context of the p-adic
Teichmüller theory developed by S. Mochizuki (cf. [29], [30]). (In a different
point of view, Y. Ihara developed, in, e.g., [14], [15], a theory of Schwarzian
equations in arithmetic context.) One of the key ingredients in the develop-
ment of this theory is the study of the p-curvature of indigenous bundles in
characteristic p. Recall that the p-curvature of a connection may be thought
of as the obstruction to the compatibility of p-power structures that appear in
certain associated spaces of infinitesimal (i.e., “Lie”) symmetries. We say that
an indigenous bundle is dormant (cf. Definition 3.1) if its p-curvature vanishes
identically. This condition on an indigenous bundle implies, in particular, the
existence of “sufficiently many” horizontal sections locally in the Zariski topol-
ogy. Moreover, a dormant indigenous bundle corresponds, in a certain sense, to
a certain type of rank 2 semistable bundle. Such semistable bundles have been
studied in a different context (cf. § 6.1). This sort of phenomenon is peculiar
to the theory of indigenous bundles in positive characteristic.

In this context, one natural question is the following:

Can one calculate explicitly the number of dormant indigenous
bundles on a general curve?

Since (as discussed above) MZzz...

g,Fp
is finite, faithfully flat, and generically étale

over Mg,Fp , the task of resolving this question may be reduced to the explicit

computation of the degree degMg,Fp
(MZzz...

g,Fp
) of MZzz...

g,Fp
over Mg,Fp .
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In the case of g = 2, S. Mochizuki (cf. [30], Chap. V, § 3.2, p. 267, Corollary
3.7), H. Lange-C. Pauly (cf. [25], p. 180, Theorem 2), and B. Osserman (cf. [33],
p. 274, Theorem 1.2) verified (by applying different methods) the equality

degM2,Fp
(MZzz...

2,Fp
) =

1

24
· (p3 − p).

For arbitrary g, Kirti Joshi conjectured, with his amazing insight, an explicit
description, as asserted in Theorem A, of the value degMg,Fp

(MZzz...

g,Fp
). (In fact,

Joshi has proposed, in personal communication to the author, a somewhat more
general conjecture. In the present paper, however, we shall restrict our attention
to a certain special case of this more general conjecture.) The goal of the present
paper is to verify the case r = 2 of this conjecture of Joshi.

Our discussion in the present paper follows, to a substantial extent, the ideas
discussed in [18], as well as in personal communication to the author by Kirti
Joshi. Indeed, certain of the results obtained in the present paper are mild
generalizations of the results obtained in [18] concerning rank 2 opers to the
case of families of curves over quite general base schemes. (Such relative for-
mulations are necessary in the theory of the present paper, in order to consider
deformations of various types of data.) For example, Lemma 4.1 in the present
paper corresponds to [18], p. 10, Theorem 3.1.6 (or [19], § 5.3, p. 627; [35], § 2,
p. 430, Lemma 2.1); Lemma 4.2 corresponds to [18], p. 20, Theorem 5.4.1; and
Proposition 4.3 corresponds to [18], p. 21, Proposition 5.4.2. Moreover, the in-
sight concerning the connection with the formula of Holla (cf. Theorem 5.1),
which is a special case of the Vafa-Intriligator formula, is due to Joshi.

On the other hand, the new ideas introduced in the present paper may be
summarized as follows. First, we verify the vanishing of obstructions to defor-
mation to characteristic zero of a certain Quot-scheme that is related to MZzz...

g,Fp

(cf. Proposition 4.3, Lemma 4.4, and the discussion in the proof of Theorem

5.2). Then we relate the value degMg,Fp
(MZzz...

g,Fp
) to the degree of the result

of base-changing this Quot-scheme to C by applying the formula of Holla (cf.
Theorem 5.1, the proof of Theorem 5.2) directly.

Finally, F. Liu and B. Osserman have shown (cf. [22], p. 126, Theorem 2.1)

that the value degMg,Fp
(MZzz...

g,Fp
) may expressed as a polynomial with respect to

the characteristic of the base field. This was done by applying Ehrhart’s theory
concerning the cardinality of the set of lattice points inside a polytope. In § 6,
we shall discuss the relation between this result and the main theorem of the
present paper.
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1. Preliminaries

1.1. Throughout this paper, we fix an odd prime number p.

1.2. We shall denote by (Set) the category of (small) sets. If S is a Deligne-
Mumford stack, then we shall denote by (Sch)S the category of schemes over
S.

1.3. If S is a scheme and F an OS-module, then we shall denote by F∨ its dual
sheaf, i.e., F∨ := HomOS

(F ,OS). If f : T → S is a finite flat scheme over a
connected scheme S, then we shall denote by degS(T ) the degree of T over S,
i.e., the rank of locally free OS-module f∗OT .

1.4. If S is a scheme (or more generally, a Deligne-Mumford stack), then we
define a curve over S to be a geometrically connected and flat (relative) scheme
f : X → S over S of relative dimension 1. Denote by ΩX/S the sheaf of 1-
differentials of X over S and TX/S the dual sheaf of ΩX/S (i.e., the sheaf of
derivations of X over S). We shall say that a proper smooth curve f : X → S
over S is of genus g if the direct image f∗ΩX/S is locally free of constant rank
g.

1.5. Let S be a scheme over a field k, X a smooth scheme over S, G an algebraic
group over k, and g the Lie algebra of G. Suppose that π : E → X is a G-torsor
over X. Then we may associate to π a short exact sequence

0 → ad(E) → T̃E/S
αE→ TX/S → 0,

where ad(E) := E ×G g denotes the adjoint bundle associated to the G-torsor E ,

and T̃E/S denotes the subsheaf of G-invariant sections (π∗TE/S)G of π∗TE/S. An

S-connection on E is a split injection ∇ : TX/S → T̃E/S of the above short exact
sequence (i.e., αE ◦ ∇ = id). If X is of relative dimension 1 over S, then any
such S-connection is necessarily integrable, i.e., compatible with the Lie bracket

structures on TX/S and T̃E/S = (π∗TE/S)G.
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Assume that G is a closed subgroup of GLn for n ≥ 1. Then the notion of an
S-connection defined here may be identified with the usual definition of an S-
connection on the associated vector bundle E ×G (O⊕n

X ) (cf. [20], p. 10, Lemma
2.2.3; [21], p. 178, (1.0)). In this situation, we shall not distinguish between
these definitions of a connection.

If V is a vector bundle on X equipped with an S-connection on V , then
we denote by V∇ the sheaf of horizontal sections in V (i.e., the kernel of the
S-connection V → V ⊗ ΩX/S).

1.6. Let S be a scheme of characteristic p (cf. § 1.1) and f : X → S a scheme
over S. The Frobenius twist of X over S is the base-change X(1) of the S-
scheme X via the absolute Frobenius morphism FS : S → S of S. Denote by
f (1) : X(1) → S the structure morphism of the Frobenius twist of X over S.
The relative Frobenius morphism of X over S is the unique morphism FX/S :

X → X(1) over S that fits into a commutative diagram of the form

X
FX/S−−−→ X(1) −−−→ X

f

⏐⏐� f (1)

⏐⏐� f

⏐⏐�
S

id−−−→ S −−−→ S,

where the upper (respectively, the lower) composite is the absolute Frobenius
morphism of X (respectively, S). If f : X → S is smooth, geometrically
connected and of relative dimension n, then the relative Frobenius morphism
FX/S : X → X(1) is finite and faithfully flat of degree pn. In particular, the
OX(1)-module FX/S∗OX is locally free of rank pn.

2. Indigenous bundles

In this section, we recall the notion of an indigenous bundle on a curve. Much
of the content of this section is implicit in [29].

First, we discuss the definition of an indigenous bundle on a curve (cf. [7], §4,
p. 104; [29], Chap. I, § 2, p. 1002, Definition 2.2). Fix a scheme S of characteristic
p (cf. §1.1) and a proper smooth curve f : X → S of genus g > 1 (cf. § 1.2).

Definition 2.1.

(i) Let P� = (P ,∇) be a pair consisting of a PGL2-torsor P over X and an
(integrable) S-connection ∇ on P . We shall say that P� is an indige-
nous bundle on X/S if there exists a globally defined section σ of the
associated P1-bundle P1

P := P ×PGL2 P1 which has a nowhere vanishing
derivative with respect to the connection ∇. We shall refer to the section
σ as the Hodge section of P� (cf. Remark 2.1.1 (i)).
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(ii) Let P�
1 = (P1,∇1), P�

2 = (P2,∇2) be indigenous bundles on X/S. An

isomorphism from P�
1 to P�

2 is an isomorphism P1
∼→ P2 of PGL2-

torsors over X that is compatible with the respective connections (cf.
Remark 2.1.1 (iii)).

Remark 2.1.1.
Let P� = (P ,∇) be an indigenous bundle on X/S.

(i) The Hodge section σ of P� is uniquely determined by the condition
that σ have a nowhere vanishing derivative with respect to ∇ (cf. [29],
Chap. I, § 2, p. 1004, Proposition 2.4).

(ii) The underlying PGL2-torsors of any two indigenous bundles on X/S
are isomorphic (cf. [29], Chap. I, § 2, p. 1004, Proposition 2.5). If there
is a spin structure L = (L, ηL) on X/S (cf. Definition 2.2), then the
P1-bundle P1

P is isomorphic to the projectivization of an L-bundle F as
in Definition 2.3 (i), and the subbundle L ⊆ F (cf. Definition 2.3 (i))
induces the Hodge section σ (cf. Proposition 2.4).

(iii) If two indigenous bundles on X/S are isomorphic, then any isomorphism
between them is unique. In particular, an indigenous bundle has no
nontrivial automorphisms (cf. § 1.1; [29], Chap. I, § 2, p. 1006, Theorem
2.8).

Next, we consider a certain class of rank 2 vector bundles with an integrable
connection (cf. Definition 2.3 (ii)) associated to a specific choice of a spin
structure (cf. Definition 2.2). In particular, we show (cf. Proposition 2.4)
that such objects correspond to indigenous bundles bijectively. We recall from,
e.g., [17], § 2.1, p. 25 the following:

Definition 2.2.
A spin structure on X/S is a pair

L := (L, ηL)

consisting of an invertible sheaf L on X and an isomorphism ηL : ΩX/S
∼→ L⊗2.

A spin curve is a pair
(Y/S, L)

consisting of a proper smooth curve Y/S of genus g > 1 and a spin structure L

on Y/S.

Remark 2.2.1.

(i) X/S necessarily admits, at least étale locally on S, a spin structure.
Indeed, let us denote by Picd

X/S the relative Picard scheme of X/S clas-

sifying the set of (equivalence classes, relative to the equivalence relation
determined by tensoring with a line bundle pulled back from the base
S, of) degree d invertible sheaves on X. Then the morphism

Picg−1
X/S → Pic2g−2

X/S : [L] �→ [L⊗2]
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given by multiplication by 2 is finite and étale (cf. § 1.1). Thus, the
S-rational point of Pic2g−2

X/S classifying the equivalence class [ΩX/S] de-

termined by ΩX/S lifts, étale locally, to a point of Picg−1
X/S.

(ii) Let L = (L, ηL) be a spin structure on X/S and T an S-scheme. Then by
pulling back the structures L, ηL via the natural projection X×ST → X,
we obtain a spin structure on the curve X ×S T over T , which, by abuse
of notation, we shall also denote by L.

In the following, let us fix a spin structure L = (L, ηL) on X/S.

Definition 2.3.

(i) An L-bundle on X/S is an extension, in the category of OX-modules,

0 −→ L −→ F −→ L∨ −→ 0

of L∨ by L whose restriction to each fiber over S is nontrivial (cf. Remark
2.3.1 (i)). We shall regard the underlying rank 2 vector bundle associated
to an L-bundle as being equipped with a 2-step decreasing filtration
{F i}2

i=0, namely, the filtration defined as follows:

F2 := 0 ⊆ F1 := Im(L) ⊆ F0 := F .

(ii) An L-indigenous vector bundle on X/S is a triple

F� := (F ,∇, {F1}2
i=0)

consisting of an L-bundle (F , {F i}2
i=0) on X/S and an S-connection ∇ :

F → F ⊗ ΩX/S on F (cf. § 1.5) satisfying the following two conditions.
(1) If we equip OX with the trivial connection and the determinant

bundle det(F) with the natural connection induced by ∇, then the
natural composite isomorphism

det(F)
∼→ L⊗L∨ ∼→ OX

is horizontal.
(2) The composite

L ∇|L→ F ⊗ ΩX/S � L∨ ⊗ ΩX/S

of the restriction ∇|L of ∇ to L (⊆ F) and the morphism F ⊗
ΩX/S � L∨ ⊗ ΩX/S induced by the quotient F � L∨ is an isomor-
phism. This composite is often referred to as the Kodaira-Spencer
map.

(iii) Let F�
1 = (F1,∇1, {F1

1}2
i=0), F�

2 = (F2,∇2, {F1
2}2

i=0) on X/S be L-
indigenous bundles on X/S. Then an isomorphism from F�

1 to F�
2 is

an isomorphism F1
∼→ F2 of OX-modules that is compatible with the

respective connections and filtrations and induces the identity morphism
of OX (relative to the respective natural composite isomorphisms dis-
cussed in (i)) upon taking determinants.
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Remark 2.3.1.

(i) X/S always admits an L-bundle. Moreover, any two L-bundles on X/S
are isomorphic Zariski locally on S. Indeed, since f : X → S is of rela-
tive dimension 1, the Leray-Serre spectral sequence Hp(S, Rqf∗ΩX/S) ⇒
Hp+q(X, f∗ΩX/S) associated to the morphism f : X → S yields an exact
sequence

0 → H1(S, f∗ΩX/S) → Ext1(L∨,L) → H0(S, R1f∗ΩX/S) → H2(S, f∗ΩX/S),

where the set Ext1(L∨,L) (∼= H1(X, ΩX/S)) corresponds to the set of
extension classes of L∨ by L. In particular, if S is an affine scheme,
then the set of nontrivial extension classes corresponds bijectively to
the set H0(S,OS) \ {0} ⊆ H0(S,OS) ∼= H0(S, R1f∗ΩX/S).

Also, we note that it follows immediately from the fact that the degree
of the line bundle L on each fiber over S is positive that the structure
of L-bundle on the underlying rank 2 vector bundle of an L-bundle is
unique.

(ii) If two L-indigenous vector bundles on X/S are isomorphic, then any
isomorphism between them is unique up to multiplication by an element
of Γ(S,OS) whose square is equal to 1 (i.e, ±1 if S is connected). In
particular, the group of automorphisms of an L-indigenous vector bundle
may be identified with the group of elements of Γ(S,OS) whose square
is equal to 1. (Indeed, these facts follow from an argument similar to
the argument given in the proof in [29], Chap. I, § 2, p. 1006, Theorem
2.8.)

(iii) One may define, in an evident fashion, the pull-back of an L-indigenous
vector bundles on X/S with respect to a morphism of schemes S ′ →
S; this notion of pull-back is compatible, in the evident sense, with
composites S ′′ → S ′ → S.

Let F� = (F ,∇, {F i}2
i=0) be an L-indigenous vector bundle on X/S. By

executing a change of structure group via the natural map SL2 → PGL2, one
may construct, from the pair (F ,∇), a PGL2-torsor PF together with an S-
connection ∇PF on PF . Moreover, the subbundle L (⊆ F) determines a globally
defined section σ of the associated P1-bundle P1

F := PF ×PGL2 P1 on X. One
may verify easily from the condition given in Definition 2.3 (ii) (2) that the pair
P� := (PF ,∇PF ) forms an indigenous bundle on X/S, whose Hodge section is
given by σ (cf. Definition 2.1 (i)). Then, we have (cf. [29], Chap. I, § 2, p. 1004,
Proposition 2.6) the following:

Proposition 2.4.
If (X/S, L) is a spin curve, then the assignment F� �→ P� discussed above
determines a functor from the groupoid of L-indigenous vector bundles on X/S
to the groupoid of indigenous bundles on X/S. Moreover, this functor induces a
bijective correspondence between the set of isomorphism classes of L-indigenous
vector bundles on X/S (cf. Remark 2.3.1 (ii)) and the set of isomorphism
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classes of indigenous bundles on X/S (cf. Remark 2.1.1 (iii)). Finally, this
correspondence is functorial with respect to S (cf. Remark 2.3.1 (iii)).

Proof. The construction of a functor as asserted in the statement of Proposi-
tion 2.4 is routine. The asserted (bijective) correspondence follows from [29],
Chap. I, § 2, p. 1004, Proposition 2.6. (Here, we note that Proposition 2.6 in
loc. cit. states only that an indigenous bundle determines an indigenous vector
bundle (cf. [29], Chap. I, § 2, p. 1002, Definition 2.2) up to tensor product with
a line bundle together with a connection whose square is trivial. But one may
eliminate such an indeterminacy by the condition that the underlying vector
bundle be an L-bundle.) The asserted functoriality with respect to S follows
immediately from the construction of the assignment F� �→ P� (cf. Remark
2.3.1 (iii)). �

3. Dormant indigenous bundles

In this section, we recall the notion of a dormant indigenous bundle and
discuss various moduli functors related to this notion.

Let S be a scheme over a field k of characteristic p (cf. § 1.1) and f : X → S
a proper smooth curve of genus g > 1. Denote by X(1) the Frobenius twist of
X over S and FX/S : X → X(1) the relative Frobenius morphism of X over S
(cf. § 1.6).

First, we recall the definition of the p-curvature map. Let us fix an algebraic
group G over k and denote by g the Lie algebra of G. Let (π : E → X,∇ :

TX/S → T̃E/S) be a pair consisting of a G-torsor E over X and an S-connection

∇ on E , i.e., a section of the natural quotient αE : (π∗TE/S)G =: T̃E/S → TX/S (cf.
§ 1.5). If ∂ is a derivation corresponding to a local section ∂ of TX/S (respectively,

T̃E := (π∗TE/S)G), then we shall denote by ∂[p] the p-th iterate of ∂, which is also

a derivation corresponding to a local section of TX/S (respectively, T̃E). Since

αE(∂[p]) = (αE(∂))[p] for any local section of TX/S, the image of the p-linear map

from TX/S to T̃E/S defined by assigning ∂ �→ ∇(∂[p]) − (∇(∂))[p] is contained in
ad(E) (= ker(αE)). Thus, we obtain an OX-linear morphism

ψ(E,∇) : T ⊗p
X/S → ad(E)

determined by assigning

∂⊗p �→ ∇(∂[p]) − (∇(∂))[p].

We shall refer to the morphism ψ(E,∇) as the p-curvature map of (E ,∇).

If U is a vector bundle on X(1), then we may define an S-connection (cf.
§ 1.5; [21], p. 178, (1.0))

∇can
U : F ∗

X/SU → F ∗
X/SU ⊗ ΩX/S

on the pull-back F ∗
X/SU of U , which is uniquely determined by the condition

that the sections of the subsheaf F−1
X/S(U) be horizontal. It is easily verified that
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the p-curvature map of (F ∗
X/SU ,∇can

U ) vanishes identically on X (cf. Remark

3.0.1 (i)).

Remark 3.0.1.
Assume that G is a closed subgroup of GLn for n ≥ 1 (cf. § 1.5). Let (E ,∇) be
a pair consisting of a G-torsor E over X and an S-connection ∇ on E . Write V
for the vector bundle on X associated to E and ∇V for the S-connection on V
induced by ∇.

(i) The p-curvature map ψ(E,∇) of (E ,∇) is compatible, in the evident sense,
with the classical p-curvature map (cf., e.g., [21], § 5, p. 190) of (V ,∇V).
In this situation, we shall not distinguish between these definitions of
the p-curvature map.

(ii) The sheaf V∇ of horizontal sections in V may be considered as an OX(1)-
module via the underlying homeomorphism of the relative Frobenius
morphism FX/S : X → X(1). Thus, we have a natural horizontal mor-
phism

ν(V,∇V ) : (F ∗
X/SV∇,∇can

V∇) → (V ,∇V)

of OX-modules. It is known (cf. [21], § 5, p. 190, Theorem 5.1) that the p-
curvature map of (V ,∇V) vanishes identically on X if and only if ν(V,∇V )

is an isomorphism. In particular, the assignment V �→ (F ∗
X/SV ,∇can

V∇)
determines an equivalence, which is compatible with the formation of
tensor products (hence also symmetric and exterior products), between
the category of vector bundles on X(1) and the category of vector bun-
dles on X equipped with an S-connection whose p-curvature vanishes
identically.

Definition 3.1.
We shall say that an indigenous bundle P� = (P ,∇) (respectively, an L-
indigenous vector bundle F� = (F ,∇, {F i}2

i=0)) on X/S is dormant if the
p-curvature map of (P ,∇) (respectively, (F ,∇)) vanishes identically on X.

Next, we shall define a certain class of dormant indigenous bundles, which we
shall refer to as dormant ordinary. Let P� = (P ,∇) be a dormant indigenous
bundle on X/S. Denote by

ad(P�) := (ad(P),∇ad)

the pair consisting of the adjoint bundle ad(P) associated to P and the S-
connection ∇ad on ad(P) naturally induced by ∇. Let us consider the 1-st
relative de Rham cohomology sheaf H1

dR(ad(P�)) of ad(P�), that is,

H1
dR(ad(P�)) := R1f∗(ad(P) ⊗ Ω•

X/S),

where ad(P) ⊗ Ω•
X/S denotes the complex

· · · −→ 0 −→ ad(P)
∇ad−→ ad(P) ⊗ ΩX/S −→ 0 −→ · · ·
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concentrated in degrees 0 and 1. Recall (cf. [29], Chap. I, § 2, p. 1006, Theorem
2.8) that there is a natural exact sequence

0 → f∗(Ω⊗2
X/S) → H1

dR(ad(P�)) → R1f∗(TX/S) → 0.

On the other hand, the natural inclusion ad(P)∇ ↪→ ad(P) of the subsheaf of
horizontal sections induces a morphism of OS-modules

R1f∗(ad(P)∇) → H1
dR(ad(P�)).

Thus, by composing this morphism with the right-hand surjection in the above
short exact sequence, we obtain a morphism

γP� : R1f∗(ad(P)∇) → R1f∗(TX/S)

of OS-modules.

Definition 3.2.
We shall say that an indigenous bundle P� is dormant ordinary if P� is

dormant and γP� is an isomorphism.

Next, let us introduce notations for various moduli functors classifying the
objects discussed above. Let Mg,Fp be the moduli stack of proper smooth curves
of genus g > 1 over Fp. Denote by

Sg,Fp : (Sch)Mg,Fp
−→ (Set)

(cf. [29], Chap. I, § 3, p. 1011, the discussion preceding Lemma 3.2) the set-
valued functor on (Sch)Mg,Fp

(cf. § 1.2) which, to any Mg,Fp-scheme T , classi-

fying a curve Y/T , assigns the set of isomorphism classes of indigenous bundles
on Y/T . Also, denote by

MZzz...

g,Fp
(resp., �MZzz...

g,Fp
)

the subfunctor of Sg,Fp classifying the set of isomorphism classes of dormant
indigenous bundles (resp., dormant ordinary indigenous bundles). By forgetting
the datum of an indigenous bundle, we obtain natural transformations

Sg,Fp −→ Mg,Fp , MZzz...

g,Fp
−→ Mg,Fp .

Next, if (X/S, L) is a spin curve, then we shall denote by

MZzz...

X/S,L : (Sch)S −→ (Set)

the set-valued functor on (Sch)S which, to any S-scheme T , assigns the set
of isomorphism classes of dormant L-indigenous bundles on the curve X ×S T
over T . It follows from Proposition 2.4 that there is a natural isomorphism of
functors on (Sch)S

MZzz...

X/S,L
∼→ MZzz...

g,Fp
×Mg,Fp

S,

where MZzz...

g,Fp
×Mg,Fp

S denotes the fiber product of the natural projection

MZzz...

g,Fp
→ Mg,Fp and the classifying morphism S → Mg,Fp of X/S.
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Next, we quote a result from p-adic Teichmüller theory due to S. Mochizuki
concerning the moduli stacks (i.e., which are in fact schemes, relatively speak-
ing, over Mg,Fp) that represent the functors discussed above. Here, we wish to
emphasize the importance of the open density of the dormant ordinary locus.
As we shall see in Proposition 4.2 and its proof, the properties stated in the fol-
lowing Theorem 3.3 enable us to relate a numerical calculation in characteristic
zero to the degree of certain moduli spaces of interest in positive characteristic.

Theorem 3.3.
The functor Sg,Fp is represented by a relative affine space over Mg,Fp of

relative dimension 3g−3. The functor MZzz...

g,Fp
is represented by a closed substack

of Sg,Fp which is finite and faithfully flat over Mg,Fp, and which is smooth and

geometrically irreducible over Fp. The functor �MZzz...

g,Fp
is an open dense substack

of MZzz...

g,Fp
and coincides with the étale locus of MZzz...

g,Fp
over Mg,Fp.

Proof. The assertion follows from [29], Chap. I, § 2, p. 1007, Corollary 2.9; [30],
Chap. II, § 2.3, p. 152, Lemma 2.7; [30], Chap. II, § 2.3, p. 153, Theorem 2.8 (and
its proof). �

In particular, it follows that it makes sense to speak of the degree

degMg,Fp
(MZzz...

g,Fp
)

of MZzz...

g,Fp
over Mg,Fp . The generic étaleness of MZzz...

g,Fp
over Mg,Fp implies that if

X is a sufficiently generic proper smooth curve of genus g over an algebraically
closed field of characteristic p, then the number of dormant indigenous bun-
dles on X is exactly degMg,Fp

(MZzz...

g,Fp
). As we explained in the Introduction,

our main interest in the present paper is the explicit computation of the value
degMg,Fp

(MZzz...

g,Fp
).

4. Quot-schemes

To calculate the value of degMg,Fp
(MZzz...

g,Fp
), it will be necessary to relate MZzz...

g,Fp

to certain Quot-schemes. Here, to prepare for the discussion in §5 below, we
introduce notions for Quot-schemes in arbitrary characteristic.

Let T be a noetherian scheme, Y a proper smooth curve over T of genus
g > 1 and E a vector bundle on Y . Denote by

Q2,0
E/Y/T : (Sch)T −→ (Set)

the set-valued functor on (Sch)T which to any f : T ′ → T associates the set of
isomorphism classes of injective morphisms of coherent OY ×T T ′-modules

i : F → ET ′ ,

where ET ′ denotes the pull-back of E via the projection Y ×T T ′ → Y , such that
the quotient ET ′/i(F) is flat over T ′ (which, since Y/T is smooth of relative
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dimension 1, implies that F is locally free), and F is of rank 2 and degree 0. It
is known (cf. [8], Chap. 5, § 5.5, p. 127, Theorem 5.14) that Q2,0

E/Y/T is represented

by a proper scheme over T .
Now let (X/S, L = (L, ηL)) be a spin curve of characteristic p and denote,

for simplicity, the relative Frobenius morphism FX/S : X → X(1) by F . Then
in the following discussion, we consider the Quot-scheme discussed above

Q2,0

F∗(L∨)/X(1)/S

in the case where the data “(Y/T, E)” is taken to be (X(1)/S, F∗(L∨)). If we

denote by ĩ : F̃ → (F∗(L∨))Q2,0

F∗(L∨)/X(1)/S

the tautological injective morphism of

sheaves on X(1)×SQ2,0

F∗(L∨)/X(1)/S
, then the determinant bundle det(F̃) := ∧2(F̃)

determines a classifying morphism

det : Q2,0

F∗(L∨)/X(1)/S
→ Pic0

X(1)/S

to the relative Picard scheme Pic0
X(1)/S

(cf. Remark 2.2.1 (i)) classifying the set

of equivalence classes of degree 0 line bundles on X(1)/S. We shall denote by

Q2,O
F∗(L∨)/X(1)/S

the scheme-theoretic inverse image, via det, of the identity section of Pic0
X(1)/S

.

Next, we discuss a certain relationship between MZzz...

X/S,L and Q2,O
F∗(L∨)/X(1)/S

.

To this end, we introduce a certain filtered vector bundle with connection as
follows. Let us consider the rank p vector bundle

AL := F ∗F∗(L∨)

on X (cf. § 1.6), which has the canonical S-connection

∇can
F∗(L∨)

(cf. the discussion preceding Remark 3.0.1). By using this connection, we may
define a p-step decreasing filtration

{Ai
L}p

i=0

on AL as follows.

A0
L := AL,

A1
L := ker(AL

q
� L∨),

Aj
L := ker(Aj−1

L
∇can

F∗(L∨)
|Aj−1

L−→ AL ⊗ ΩX/S � AL/Aj−1
L ⊗ ΩX/S)

(j = 2, · · · , p), where AL(= F ∗F∗(L∨))
q
� L∨ denotes the natural quotient

determined by the adjunction relation “F ∗(−) � F∗(−)” (i.e., “the functor
F ∗(−) is left adjoint to the functor F∗(−)”).

Lemma 4.1.
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(i) For each j = 1, · · · p − 1, the map

Aj−1
L /Aj

L → Aj
L/Aj+1

L ⊗ ΩX/S

defined by assigning a �→ ∇can
F∗(L∨)(a) (a ∈ Aj−1

L ), where the “bars” denote

the images in the respective quotients, is well-defined and determines an
isomorphism of OX-modules.

(ii) Let us identify A1
L/A2

L with L via the isomorphism

A1
L/A2

L
∼→ A0

L/A1
L ⊗ ΩX/S

∼→ L∨ ⊗ ΩX/S
∼→ L,

obtained by composing the isomorphism of (i) (i.e., the first isomorphism
of the display) with the tautological isomorphism arising from the defi-
nition of A1

L (i.e., the second isomorphism of the display), followed by
the isomorphism determined by the given spin structure (i.e., the third
isomorphism of the display). Then the natural extension structure

0 → A1
L/A2

L → AL/A2
L → AL/A1

L → 0

determines a structure of L-bundle on AL/A2
L.

Proof. The various assertions of Lemma 4.1 follow from an argument (in the
case where S is an arbitrary scheme) similar to the argument (in the case where
S = Spec(k) for an algebraically closed field k) given in the proofs of [19], § 5.3,
p. 627 and [35], § 2, p. 430, Lemma 2.1. �

Lemma 4.2.
Let g : V → F∗(L∨) be an injective morphism classified by an S-rational point

of Q2,0

F∗(L∨)/X(1)/S
and denote by {(F ∗V)i}p

i=0 the filtration on the pull-back F ∗V
defined by setting

(F ∗V)i := (F ∗V) ∩ (F ∗g)−1(Ai
L),

where we denote by F ∗g the pull-back of g via F .

(i) The composite
F ∗V → AL � AL/A2

L
of F ∗g with the natural quotient AL � AL/A2

L is an isomorphism of
OX-modules.

(ii) If, moreover, g corresponds to an S-rational point of Q2,O
F∗(L∨)/X(1)/S

, then

the triple
(F ∗V ,∇can

V , {(F ∗V)i}2
i=0),

where ∇can
V denotes the canonical connection on F ∗V (cf. the discussion

preceding Remark 3.0.1), forms a dormant L-indigenous bundle on X/S.

Proof. First, we consider assertion (i). Since F ∗V and AL/A2
L are flat over S,

it suffices, by considering the various fibers over S, to verify the case where
S = Spec(k) for a field k. If we write gri := (F ∗V)i/(F ∗V)i+1 (i = 0, · · · , p−1),
then it follows immediately from the definitions that the coherent OX-module
gri admits a natural embedding

gri ↪→ Ai
L/Ai+1

L



THE GENERIC NUMBER OF DORMANT INDIGENOUS BUNDLES 15

into the subquotient Ai
L/Ai+1

L . Since this subquotient is a line bundle (cf.
Lemma 4.1 (i), (ii)), one verifies easily that gri is either trivial or a line bundle.
In particular, since F ∗V is of rank 2, the cardinality of the set I :=

{
i
∣∣gri �=

0
}

is exactly 2. Next, let us observe that the pull-back F ∗g of g via F is
compatible with the respective connections ∇can

V (cf. the statement of assertion
(ii)), ∇can

F∗(L∨). Thus, it follows from Lemma 4.1 (i) that gri+1 �= 0 implies gri �= 0.

But this implies that I = {0, 1}, and hence that the composite

F ∗V → AL � AL/A2
L

is an isomorphism at the generic point of X. On the other hand, observe that

deg(F ∗V) = p · deg(V) = p · 0 = 0

and

deg(AL/A2
L) = deg(AL/A1

L) + deg(A1
L/A2

L) = deg(L∨) + deg(L) = 0

(cf. Lemma 4.1 (i)). Thus, by comparing the respective degrees of F ∗V
and AL/A2

L, we conclude that the above composite is an isomorphism of OX-
modules. This completes the proof of assertion (i). Assertion (ii) follows imme-
diately from the definition of an L-indigenous bundle, assertion (i), and Lemma
4.1 (i), (ii). �

By applying the above lemma, we may conclude that the moduli space
MZzz...

X/S,L is isomorphic to the Quot-scheme Q2,O
F∗(L∨)/X(1)/S

as follows.

Proposition 4.3.
Let (X/S, L) be a spin curve. Then there is an isomorphism of S-schemes

Q2,O
F∗(L∨)/X(1)/S

∼→ MZzz...

X/S,L.

Proof. The assignment

[g : V → F∗(L∨)] �→ (F ∗V ,∇can
F ∗V , {(F ∗V)i}2

i=0),

discussed in Lemma 4.2, determines (by Lemma 4.2 (ii)) a map

αS : Q2,O
F∗(L∨)/X(1)/S

(S) → MZzz...

X/S,L(S)

between the respective sets of S-rational points. By the functoriality of the
construction of αS with respect to S, it suffices to prove the bijectivity of αS.

The injectivity of αS follows from the observation that any element [g : V →
F∗(L∨)] ∈ Q2,O

F∗(L∨)/X(1)/S
(S) is, by adjunction, determined by the morphism

F ∗V → L∨, i.e., the natural surjection, as in Definition 2.3 (i), arising from the
fact that F ∗V is an L-bundle (cf. Lemma 4.2 (ii)).

Next, we consider the surjectivity of αS. Let (F ,∇, {F i}i) be a dormant L-

indigenous bundle on X/S. Consider the composite F ∗F∇ ∼→ F � L∨ of the

natural horizontal isomorphism F ∗F∇ ∼→ F (cf. Remark 3.0.1 (ii)) with the
natural surjection F � F/F1 = L∨. This composite determines a morphism

gF : (F ∼=)F ∗F∇ → F ∗F∗(L∨)(=: AL)
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via the adjunction relation “F ∗(−) � F∗(−)” (cf, the discussion preceding
Lemma 4.1) and pull-back by F .

Next, we claim that gF is injective. Indeed, since gF is (tautologically, by
construction!) compatible with the respective surjections F � L∨, AL � L∨

to L∨, we conclude that gF(F1) ⊆ A1
L, and ker(gF) ⊆ F1. Since gF is manifestly

horizontal (by construction), ker(gF) is stabilized by ∇, hence contained in the
kernel of the Kodaira-Spencer map F1 → F/F1 ⊗ ΩX/S(cf. Definition 2.3 (ii)
(2)), which is an isomorphism by the definition of an L-indigenous bundle (cf.
Definition 2.3 (ii)). This implies that gF is injective and completes the proof
of the claim. Moreover, by applying a similar argument to the pull-back of
gF via any base-change over S, one concludes that gF is universally injective
with respect to base-change over S. This implies that AL/gF(F) is flat over S
(cf. [26], p. 17, Theorem 1).

Now denote by g∇
F : F∇ → F∗(L∨) the morphism obtained by restricting gF

to the respective subsheaves of horizontal sections in F , AL. Observe that the
pull-back of g∇

F via F may be identified with gF , and that F ∗(F∗(L∨)/g∇
F (F∇))

is naturally isomorphic to AL/gF(F). Thus, it follows from the faithful flatness
of F that g∇

F is injective, and F∗(L∨)/g∇
F (F∇) is flat over S. On the other

hand, since the determinant of (F ,∇) is trivial, det(F∇) is isomorphic to the
trivial OX(1)-module (cf. Remark 3.0.1 (ii)). Thus, g∇

F determines an S-rational

point of Q2,O
F∗(L∨)/X(1)/S

that is mapped by αS to the S-rational point of MZzz...

X/S,L

corresponding to (F ,∇, {F i}i). This implies that αS is surjective and hence
completes the proof of Proposition 4.3. �

Next, we relate Q2,O
F∗(L∨)/X(1)/S

to Q2,0

F∗(L∨)/X(1)/S
. By pulling back line bundles

on X(1) via the relative Frobenius F : X → X(1), we obtain a morphism

Pic0
X(1)/S → Pic0

X/S

[N ] �→ [F ∗N ].

We shall denote by

VerX/S

the scheme-theoretic inverse image, via this morphism, of the identity section of
Pic0

X/S. It is well-known (cf. [4], EXPOSE VII, § 4.3, pp. 440-443; [28], § 8, p. 114,
Proposition 8.1 and p. 115, Theorem 8.2; [27], APPENDIX, p. 175, Lemma
(1.0)) that VerX/S is finite and faithfully flat over S of degree pg and, more-
over, étale over the points s of S such that the fiber of X/S at s is ordinary.
(Recall that the locus of Mg,Fp classifying ordinary curves is open and dense.)
Then we have the following

Lemma 4.4.
There is an isomorphism of S-schemes

Q2,O
F∗(L∨)/X(1)/S

×S VerX/S
∼→ Q2,0

F∗(L∨)/X(1)/S
.
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Proof. It suffices to prove that there is a bijection between the respective sets
of S-rational points that is functorial with respect to S.

Let (g : V → F∗(L∨),N ) be an element of (Q2,O
F∗(L∨)/X(1)/S

×S VerX/S)(S). It

follows from the projection formula that the composite

gN : V ⊗N → F∗(L∨) ⊗N → F∗(L∨ ⊗ F ∗N )
∼→ F∗(L∨ ⊗OX) = F∗(L∨)

determines an element of Q2,0

F∗(L∨)/X(1)/S
(S). Thus, we obtain a functorial (with

respect to S) map

γS : (Q2,O
F∗(L∨)/X(1)/S

×S VerX/S)(S) → Q2,0

F∗(L∨)/X(1)/S
(S).

Conversely, let g : V → F∗(L∨) be an injective morphism classified by an
element of Q2,0

F∗(L∨)/X(1)/S
(S). Consider the injective morphism g

det(V)⊗
p−1

2
, i.e.,

the morphism gN constructed above in the case where “N ” is taken to be

N = det(V)⊗
p−1
2 . Here, we observe that

det(V ⊗ det(V)⊗
p−1
2 ) ∼= det(V) ⊗ det(V)⊗2· p−1

2 ∼= det(V)⊗p ∼= F ∗
S(F ∗(det(V))),

where F ∗
S(−) denotes the pull-back by the morphism X(1) → X obtained by

base-change of X/S via the absolute Frobenius morphism FS : S → S of S
(cf. § 1.6). On the other hand, since F ∗(det(V)) ∼= (AL/A1

L) ⊗ (A1
L/A2

L) ∼=
L∨ ⊗ L ∼= OX (cf. Lemmas 4.1 (ii), 4.2 (i)), it follows that the determinant

of V ⊗ det(V)⊗
p−1

2 is trivial. Thus the pair (g
det(V)⊗

p−1
2

, det(V)) determines an

element of (Q2,O
F∗(L∨)/X(1)/S

×SVerX/S)(S). One verifies easily that this assignment

determines an inverse to γS. This completes the proof of Lemma 4.4. �

5. Computation via the Vafa-Intriligator formula

By combining Proposition 4.3, Lemma 4.4, and the discussions preceding
Theorem 3.3 and Lemma 4.4, we obtain the following equalities:

degMg,Fp
(MZzz...

g,Fp
) = degS(MZzz...

X/S,L) = degS(Q2,O
F∗(L∨)/X(1)/S

) =
1

pg
·degS(Q2,0

F∗(L∨)/X(1)/S
).

Therefore, to determine the value of degMg,Fp
(MZzz...

g,Fp
), it suffices to calculate

the value degS(Q2,0

F∗(L∨)/X(1)/S
) (for an arbitrary spin curve (X/S, L)).

In this section, we review a numerical formula concerning the degree of a
certain Quot-scheme over the field of complex number C and relate it to the
degree of the Quot-scheme in positive characteristic.

Let C be a smooth proper curve over C of genus g > 1. If r is an integer,
and E is a vector bundle on C of rank n and degree d with 1 ≤ r ≤ n, then we
define invariants

emax(E , r) := max
{
deg(F) ∈ Z

∣∣ F is a subbundle of E of rank r
}
,

sr(E) := d · r − n · emax(E , r).
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(Here, we recall that one verifies immediately, for instance, by considering an
embedding of E into a direct sum of n line bundles, that emax(E , r) is well-
defined.)

In the following, we review some facts concerning these invariants (cf. [11]; [23];

[12]). Denote by sN n,d
C the moduli space of stable bundles on C of rank n and

degree d (cf. [23], § 1, pp. 310-311). It is known that sN n,d
C is irreducible (cf.

the discussion at the beginning of [23], § 2, p. 311). Thus, it makes sense to

speak of a “sufficiently general” stable bundle in sN n,d
C , i.e., a stable bundle

that corresponds to a point of the scheme sN n,d
C that lies outside some fixed

closed subscheme. If E is a sufficiently general stable bundle in sN n,d
C , then it

holds (cf. [23], § 1, pp. 310-311) that sr(E) = r(n − r)(g − 1) + ε, where ε is the
unique integer such that 0 ≤ ε < n and sr(E) = r · d mod n. Also, the number
ε coincides (cf. [12], § 1, pp. 121-122) with the dimension of every irreducible

component of the Quot-scheme Qr,emax(E,r)
E/C/C

(cf. § 4). If, moreover, the equality

sr(E) = r(n − r)(g − 1) holds (i.e., dim(Qr,emax(E,r)
E/C/C

) = 0), then Qr,emax(E,r)
E/C/C

is

étale over Spec(C) (cf. [12], § 1, pp. 121-122). Finally, under this particular as-
sumption, a formula for the degree of this Quot-scheme was given by Holla as
follows.

Theorem 5.1.
Let C be a proper smooth curve over C of genus g > 1, E a sufficiently

general stable bundle in sN n,d
C . Write (a, b) for the unique pair of integers

such that d = an − b with 0 ≤ b < n. Also, we suppose that the equality
sr(E) = r(n − r)(g − 1) (equivalently, emax(E , r) = (dr − r(n − r)(g − 1))/n)
holds. Then we have

degC(Qr,emax(E,r)
E/C/C

) =
(−1)(r−1)(br−(g−1)r2)/nnr(g−1)

r!

∑
ρ1,··· ,ρr

(
∏r

i=1 ρi)
b−g+1∏

i	=j(ρi − ρj)g−1
,

where ρn
i = 1, for 1 ≤ i ≤ r and the sum is over tuples (ρ1, · · · , ρr) with ρi �= ρj.

Proof. The assertion follows from [12], § 4, p. 132, Theorem 4.2, where “k” (re-
spectively, “r”) corresponds to our r (respectively, n). �

By applying this formula, we conclude the same kind of formula for certain
vector bundles in positive characteristic, as follows.

Theorem 5.2.
Let k an algebraically closed field of characteristic p and (X/k, L = (L, ηL))

a spin curve of genus g > 1. Suppose that X/k is sufficiently general in Mg,Fp.
(Here, we recall that Mg,Fp is irreducible (cf. [3], § 5); thus, it makes sense
to speak of a “sufficiently general” X/k, i.e., an X/k that determines a point
of Mg,Fp that lies outside some fixed closed substack.) Then Q2,0

F∗(L∨)/X(1)/k
is

finite and étale over k. If, moreover, we suppose that p > 2(g − 1), then
the degree degk(Q2,0

F∗(L∨)/X(1)/k
) of Q2,0

F∗(L∨)/X(1)/k
over Spec(k) is given by the
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following formula:

degk(Q2,0

F∗(L∨)/X(1)/k
) =

p2g−1

22g−1
·

p−1∑
θ=1

1

sin2g−2(π·θ
p

)

(
=

(−1)g−1 · p2g−1

2
·

∑
ζp=1,ζ 	=1

ζg−1

(ζ − 1)2g−2

)
.

Proof. Suppose that X is an ordinary (cf. the discussion preceding Lemma 4.4)
proper smooth curve over k classified by a k-rational point of Mg,Fp which lies

in the complement of the image of MZzz...

g,Fp
\ �MZzz...

g,Fp
via the natural projection

MZzz...

g,Fp
→ Mg,Fp (cf. Theorem 3.3; the discussion preceding Theorem 3.3). Then

it follows from Theorem 3.3, Proposition 4.3, and Lemma 4.4 that Q2,0

F∗(L∨)/X(1)/k

is finite and étale over k.
Next, we determine the value of degk(Q2,0

F∗(L∨)/X(1)/k
). Denote by W the ring

of Witt vectors with coefficients in k and K the fraction field of W . Since
dim(X(1)) = 1, which implies that H2(XF , Ω∨

X(1)) = 0, it follows from well-

known generalities concerning deformation theory that X(1) may be lifted to a

smooth proper curve X
(1)
W over W of genus g. In a similar vein, the fact that

H2(X(1), EndO
X(1)

(F∗(L∨))) = 0 implies that F∗(L∨) may be lifted to a vector

bundle E on X
(1)
W .

Now let η be a k-rational point of Q2,0

F∗(L∨)/X(1)/k
classifying an injective mor-

phism i : F → F∗(L∨). The tangent space to Q2,0

F∗(L∨)/X(1)/k
at η may be nat-

urally identified with the k-vector space HomO
X(1)

(F , F∗(L∨)/i(F)), and the

obstruction to lifting η to any first order thickening of Spec(k) is given by an
element of Ext1

O
X(1)

(F , F∗(L∨)/i(F)). On the other hand, since, as was observed

above, Q2,0

F∗(L∨)/X(1)/k
is étale over Spec(k), it holds that HomO

X(1)
(F , F∗(L∨)/i(F)) =

0, and hence Ext1
O

X(1)
(F , F∗(L∨)/i(F)) = 0 by Lemma 5.3 below. This im-

plies that η may be lifted to a W -rational point of Q2,0

E/X
(1)
W /W

, and hence

that Q2,0

E/X
(1)
W /W

is finite and étale over W by Lemma 5.3 and the vanishing

of HomO
X(1)

(F , F∗(L∨)/i(F)). Now it follows from a routine argument that K

may be supposed to be a subfield of C. Denote by X
(1)
C

the base-change of X
(1)
W

via the morphism Spec(C) → Spec(W ) induced by the composite embedding

W ↪→ K ↪→ C, and EC the pull-back of E via the natural morphism X
(1)
C

→ X
(1)
W .

Thus, we obtain equalities

degk(Q2,0
F∗(L∨)/Xk/k) = degW (Q2,0

E/X
(1)
W /W

) = degC(Q2,0

EC/X
(1)
C

/C
).

To prove the required formula, we calculate the degree degC(Q2,0

EC/X
(1)
C

/C
) by

applying Theorem 5.1.
By [35], § 2, p. 431, Theorem 2.2, F∗(L∨) is stable. Since the degree of EC

coincides with the degree of F∗(L∨), EC is a vector bundle of degree deg(EC) =
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(p−2)(g−1) (cf. the proof of Lemma 5.3). On the other hand, one verifies easily
from the definition of stability and the properness of Quot schemes (cf. [8], § 5.5,
p. 127, Theorem 5.14) that EC is a stable vector bundle. Next, let us observe
that Q2,0

EC/X
(1)
C

/C
is zero-dimensional (cf. the discussion above), which, by the

discussion preceding Theorem 5.1, implies that s2(EC) = 2(p− 2)(g − 1). Thus,
by choosing the deformation E of F∗(L∨) appropriately, we may assume, without

loss of generality, that EC is sufficiently general in sN p,(p−2)(g−1)

X
(1)
C

that Theorem

5.1 holds. Now we compute (cf. the discussion preceding Theorem 5.1):

emax(EC, 2) =
1

p
· (degC(EC) · 2 − s2(EC))

=
1

p
· ((p − 2)(g − 1) · 2 − 2 · (p − 2)(g − 1))

= 0.

If, moreover, we write (a, b) for the unique pair of integers such that degC(EC) =
p · a − b with 0 ≤ b < p, then it follows from the hypothesis p > 2(g − 1) that
a = g − 1 and b = 2(g − 1). Thus, by applying Theorem 5.1 in the case where
the data

“(C,V, n, d, r, a, b, emax(V , r))”

is taken to be

(X
(1)
C

, EC, p, (g − 1)(p − 2), 2, g − 1, 2(g − 1), 0),

we obtain that

degC(Q2,0

EC/X
(1)
C

/C
) =

(−1)(2−1)(2(g−1)2−(g−1)22)/pp2(g−1)

2!
·
∑
ρ1,ρ2

(
∏2

i=1 ρi)
2(g−1)−g+1∏

i	=j(ρi − ρj)g−1

=
(−1)g−1 · p2g−1

2
·

∑
ζp=1,ζ 	=1

ζg−1

(ζ − 1)2g−2

=
p2g−1

2g
·

∑
ζp=1,ζ 	=1

1

(1 − ζ+ζ−1

2
)g−1

=
p2g−1

22g−1
·

p−1∑
θ=1

1

sin2g−2(π·θ
p

)
.

This completes the proof of the required equality. �

The following lemma was used in the proof of Theorem 5.2.

Lemma 5.3.
Let k be a field of characteristic p, (X/k, L := (L, ηL)) a spin curve, and

i : F → F∗(L∨) an injective morphism classified by a k-rational point of
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Q2,0

F∗(L∨)/X(1)/k
. Write G := F∗(L∨)/i(F). Then G is a vector bundle on X(1),

and it holds that

dimk(HomO
X(1)

(F ,G)) = dimk(Ext1
O

X(1)
(F ,G)).

Proof. First, we verify that G is a vector bundle. Since F : X → X(1) is
faithfully flat, it suffices to verify that the pull-back F ∗G is a vector bundle on
X. Recall (cf. Lemma 4.2 (i)) that the composite F ∗F → AL(= F ∗F∗(L∨)) →
AL/A2

L of the pull-back of i with the natural surjection AL → AL/A2
L is an

isomorphism. One verifies easily that this implies that the natural composite
A2

L → AL → F ∗G is an isomorphism, and hence that F ∗G is a vector bundle,
as desired.

Next we consider the asserted equality. Since the morphism F : X → X(1)

is finite, it follows from well-known generalities concerning cohomology that we
have an equality of Euler characteristics χ(F∗(L∨)) = χ(L∨). Thus, it follows
from the Riemann-Roch theorem that

deg(F∗(L∨)) = χ(F∗(L∨)) − rk(F∗(L∨))(1 − g)

= χ(L∨) − p(1 − g)

= (p − 2)(g − 1),

and, since rk(HomO
X(1)

(F ,G)) = 2(p − 2), that

deg(HomO
X(1)

(F ,G)) = 2 · deg(G) − (p − 2) · deg(F)

= 2 · deg(F∗(L∨)) − 0

= 2(p − 2)(g − 1).

Finally, by applying the Riemann-Roch theorem again, we obtain equalities

dimk(HomO
X(1)

(F ,G)) − dimk(Ext1
O

X(1)
(F ,G))

= deg(HomO
X(1)

(F ,G)) + rk(HomO
X(1)

(F ,G))(1 − g)

= 2(p − 2)(g − 1) + 2(p − 2)(1 − g)

= 0.

�
Thus, we conclude the main result of the present paper.

Corollary 5.4.
Suppose that p > 2(g − 1). Then the degree degMg,Fp

(MZzz...

g,Fp
) of MZzz...

g,Fp
over

Mg,Fp is given by the following formula:

degMg,Fp
(MZzz...

g,Fp
) =

pg−1

22g−1
·

p−1∑
θ=1

1

sin2g−2(π·θ
p

)

(
=

(−1)g−1 · pg−1

2
·

∑
ζp=1,ζ 	=1

ζg−1

(ζ − 1)2g−2

)
.
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Proof. Let us fix a spin curve (X/k, L) for which Theorem 5.2 holds. Then it
follows from Theorem 5.2 and the discussion at the beginning of § 5 that

degMg,Fp
(MZzz...

g,Fp
) =

1

pg
· degC(Q2,0

F∗(L∨)/X(1)/k
)

=
pg−1

22g−1
·

p−1∑
θ=1

1

sin2g−2(π·θ
p

)

(
=

(−1)g−1 · pg−1

2
·

∑
ζp=1,ζ 	=1

ζg−1

(ζ − 1)2g−2

)
.

�

6. Relation with other results

Finally, we discuss some topics related to the main result of the present paper.

6.1. Let k be an algebraically closed field of characteristic p and X a proper
smooth curve over k of genus g with p > 2(g − 1). Denote by F : X →
X(1) the relative Frobenius morphism. Let E be an indecomposable vector
bundle on X of rank 2 and degree 0. If E admits a rank one subbundle of
positive degree, then it follows from the definition of semistability that E is not
semistable. On the other hand, since E is indecomposable, a computation of
suitable Ext1 groups via Serre duality shows that the degree of any rank one
subbundle of E is at most g − 1. We shall say that E is maximally unstable if
E admits a rank one subbundle of degree g − 1(> 0). Let us denote by B the
set of isomorphism classes of rank 2 semistable bundles V on X(1) such that
det(V) ∼= OX , and F ∗V is indecomposable and maximally unstable. Then it is
well-known (cf., e.g., [32], § 4, p. 110, Proposition 4.2) that there is a natural 22g-
to-1 correspondence between B and the set of isomorphism classes of dormant
indigenous bundles on X/k. Thus, Corollary 5.4 of the present paper enables
us to calculate the cardinality of B, i.e., to conclude that

�B = 2 · pg−1 ·
p−1∑
θ=1

1

sin2g−2(π·θ
p

)
.

In the case where g = 2, this result is consistent with the result obtained in [25],
Introduction, p. 180, Theorem 2.

6.2. F. Liu and B. Osserman have shown (cf. [22], § 2, p. 127, Theorem 2.1)

that the value degMg,Fp
(MZzz...

g,Fp
) may be expressed as a polynomial with respect

to the characteristic p of degree 3g − 3 (e.g., degM2,Fp
(MZzz...

2,Fp
) = 1

24
· (p3 − p),

as referred to in Introduction). In fact, this result may also be obtained as a
consequence of Corollary 5.4. This may not be apparent at first glance, but
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nevertheless may be verified by applying either of the following two different
(but, closely related) arguments.

(1) Let C be a connected compact Riemann surface of genus g > 1. Then it
is known that the moduli space of S-equivalence classes (cf. [13], § 1.5,
p. 24, Definition 1.5.3) of rank 2 semistable bundles on C with trivial
determinant

ssN 2,O
C

may be represented by a projective algebraic variety of dimension 3g−3
(cf. [34], § 8, p. 333, Theorem 8.1; [2], § 1, p. 18; [31], Introduction), and

that Pic(ssN 2,O
C ) ∼= Z · [L] for a certain ample line bundle L (cf. [5], § 0,

p. 55, Theorem B; [2], § 2, p. 19, Theorem 1; [2], p. 21, the discussion
at the beginning of § 4). The Verlinde formula, introduced in [37] and
proved, e.g., in [6], § 4, p. 367, Theorem 4.2, implies that, for k = 0, 1, · · · ,
we have an equality

dimC(H0(ssN 2,O
C ,L⊗k)) =

(k + 2)g−1

2g−1
·

k+1∑
θ=1

1

sin2g−2( π·θ
k+2

)

(cf. [2], § 5, p. 24, Corollary). Thus, for sufficiently large k, the value at k
of the Hilbert polynomial HilbL(t) ∈ Q[t] of L coincides with the RHS of
the above equality. On the other hand, it follows from Corollary 5.4 that
for an odd prime p, the value at k = p−2 of this RHS divided by 2g coin-
cides with the value degMg,Fp

(MZzz...

g,Fp
). Thus, the value degMg,Fp

(MZzz...

g,Fp
)

(for sufficiently large p) may be expressed as HilbL(p− 2) for a suitable

polynomial HilbL(t) ∈ Q[t] of degree 3g − 3 (= dim(ssN 2,O
C )) .

(2) By comparison to the discussion of (1), the approach of the following

discussion yields a more concrete expression for degMg,Fp
(MZzz...

g,Fp
). For a

pair of positive integers (n, k), we set

V (n, k) :=
k−1∑
θ=1

1

sin2n(π·θ
k

)
.

Then it follows from [38], p. 449, Theorem 1 (i), (ii); [38], p. 449, the
proof of Theorem 1 (iii), that

V (n, k) = −Resx=0

[k · cot(kx)

sin2n(x)
dx

]
,

where Resx=0(f) denotes the residue of f at x = 0. Thus, V (n, k)
may be computed by considering the relation 1

sin2(x)
= 1 + cot2(x) and

the coefficient of the Laurent expansion (cf. [38], p. 449, the proof of
Theorem 1 (iii))

cot(x) =
1

x
+

∞∑
j=1

(−1)j22jB2j

(2j)!
x2j−1
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where B2j denotes the (2j)-th Bernoulli number, i.e.,

w

ew − 1
= 1 − w

2
+

∞∑
j=1

B2j

(2j)!
w2j.

In particular, it follows from an explicit computation that V (n, k) may
be expressed as a polynomial of degree 2n with respect to k. Thus, the

value degMg,Fp
(MZzz...

g,Fp
) (= pg−1

22g−1 · V (g − 1, p) by Corollary 5.4) may be

expressed as a polynomial with respect to p of degree 2(g−1)+(g−1) =
3g − 3. Moreover, by applying the above discussion to our calculations,
we obtain the following explicit expressions for the polynomials under
consideration:

degM2,Fp
(MZzz...

2,Fp
) =

1

24
· (p3 − p),

degM3,Fp
(MZzz...

3,Fp
) =

1

1440
· (p6 + 10p4 − 11p2),

degM4,Fp
(MZzz...

4,Fp
) =

1

120960
· (2p9 + 21p7 + 168p5 − 191p3),

degM5,Fp
(MZzz...

5,Fp
) =

1

7257600
· (3p12 + 40p10 + 294p8 + 2160p6 − 2497p4),

degM6,Fp
(MZzz...

6,Fp
) =

1

2048
·
( 2

93555
p15 +

1

2835
p13 +

26

8505
p11 +

164

8505
p9

+
128

945
p7 − 14797

93555
p5

)
,

degM7,Fp
(MZzz...

7,Fp
) =

1

8192
·
( 1382

638512875
p18 +

4

93555
p16 +

31

70875
p14

+
556

178605
p12 +

3832

212625
p10 +

256

2079
p8 − 92427157

638512875
p6

)

degM8,Fp
(MZzz...

8,Fp
) =

1

32768
p7 ·

( 4

18243225
p14 +

1382

273648375
p12 +

4

66825
p10

+
311

637875
p8 +

1184

382725
p6 +

1888

111375
p4 +

1024

9009
p2

− 36740617

273648375

)

degM9,Fp
(MZzz...

9,Fp
) =

1

131072
p8 ·

( 3617

162820783125
p16 +

32

54729675
p14

+
226648

28733079375
p12 +

2144

29469825
p10 +

4946

9568125
p8

+
268864

88409475
p6 +

17067584

1064188125
p4 +

2048

19305
p2

− 61430943169

488462349375

)
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degM10,Fp
(MZzz...

10,Fp
) =

1

524288
p9 ·

( 87734

38979295480125
p18 +

3617

54273594375
p16

+
92

91216125
p14 +

2092348

201131555625
p12 +

4042

49116375
p10

+
18716

35083125
p8 +

119654944

40226311125
p6 +

16229632

1064188125
p4

+
32768

328185
p2 − 23133945892303

194896477400625

)
.
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